Terminología usada en la ilumininación eléctrica

Terminología usada en la iluminación eléctrica a veces puede resultar muy compleja, sobre todo si uno apenas se está adentrando en estos temas. A continuación encontrará una lista de terminología usada en la iluminación eléctrica y que le puede servir para comprender más estosemas.

Luz

La luz es una forma de radiación electromagnética similar al calor radiante, las ondas de radio o los rayos X. La luz corresponde a oscilaciones extremadamente rápidas de un campo electromagnético, en un rango determinado de frecuencias que pueden ser detectadas por el ojo humano.

Terminología usada en la Ilumininación Eléctrica

Las diferentes sensaciones de color corresponden a luz que vibra con distintas frecuencias, que van desde aproximadamente 4 × 1014 vibraciones por segundo en la luz roja hasta aproximadamente 7,5 × 1014 vibraciones por segundo en la luz violeta.

El espectro de la luz visible suele definirse por su longitud de onda, que es más pequeña en el violeta (unas 40 millonésimas de centímetro) y máxima en el rojo (75 millonésimas de centímetro).Las frecuencias mayores, que corresponden a longitudes de onda más cortas, incluyen la radiación ultravioleta, y las frecuencias aún más elevadas están asociadas con los rayos X.

Las frecuencias menores, con longitudes de onda más altas, se denominan rayos infrarrojos, y las frecuencias todavía más bajas son características de las ondas de radio. La mayoría de la luz procede de electrones que vibran a esas frecuencias al ser calentados a una temperatura elevada. Cuanto mayor es la temperatura, mayor es la frecuencia de vibración y más azul es la luz producida.

Naturaleza de la luz

La luz se emite por su fuente en línea recta, y se difunde en una superficie cada vez mayor a medida que avanza; la luz por unidad de área disminuye según el cuadrado de la distancia. Cuando la luz incide sobre un objeto es absorbida o reflejada; la luz reflejada por una superficie rugosa se difunde en todas direcciones.

Algunas frecuencias se reflejan más que otras, y esto da a los objetos su color característico. Las superficies blancas difunden por igual todas las longitudes de onda, y las superficies negras absorben casi toda la luz. Por otra parte, para que la reflexión forme imágenes es necesaria una superficie muy pulida, como la de un espejo.

La definición de la naturaleza de la luz siempre ha sido un problema fundamental de la física. El matemático y físico británico Isaac Newton describió la luz como una emisión de partículas, y el astrónomo, matemático y físico holandés Christiaan Huygens desarrolló la teoría de que la luz se desplaza con un movimiento ondulatorio.

En la actualidad se cree que estas dos teorías son complementarias, y el desarrollo de la teoría cuántica ha llevado al reconocimiento de que en algunos experimentos la luz se comporta como una corriente de partículas y en otros como una onda. En las situaciones en que la luz presenta movimiento ondulatorio, la onda vibra perpendicular a la dirección de propagación; por eso, la luz puede polarizarse en dos ondas perpendiculares entre sí.

Velocidad de la luz

El primero en medir la velocidad de la luz en un experimento de laboratorio fue el físico francés Armand Hippolyte Louis Fizeau, aunque observaciones astronómicas anteriores habían proporcionado una velocidad aproximadamente correcta. En la actualidad, la velocidad de la luz en el vacío se toma como 299.792.458 m/s, y este valor se emplea para medir grandes distancias a partir del tiempo que emplea un pulso de luz o de ondas de radio para alcanzar un objetivo y volver. Este es el principio del radar.

El conocimiento preciso de la velocidad y la longitud de onda de la luz también permite una medida precisa de las longitudes. De hecho, el metro se define en la actualidad como la longitud recorrida por la luz en el vacío en un intervalo de tiempo de 1/299.792.458 segundos. La velocidad de la luz en el aire es ligeramente distinta según la longitud de onda, y en promedio es un 3% menor que en el vacío; en el agua es aproximadamente un 25% menor, y en el vidrio ordinario un 33% menor.

Iluminación eléctrica.

Iluminación mediante cualquiera de los numerosos dispositivos que convierten la energía eléctrica en luz. Los tipos de dispositivos de iluminación eléctrica utilizados con mayor frecuencia son las lámparas incandescentes, las lámparas fluorescentes y los distintos modelos de lámparas de arco y de vapor por descarga eléctrica.

Tecnología de la iluminación eléctrica

Si una corriente eléctrica pasa a través de cualquier conductor que no sea perfecto, se gasta una determinada cantidad de energía que en el conductor aparece en forma de calor. Por cuanto cualquier cuerpo caliente despedirá una cierta cantidad de luz a temperaturas superiores a los 525 ºC, un conductor que se calienta por encima de dicha temperatura mediante una corriente eléctrica actuará como fuente luminosa.

La lámpara incandescente está formada por un filamento de material de elevada temperatura de fusión dentro de una ampolla de vidrio, en cuyo interior se ha hecho el vacío, o bien llena de un gas inerte. Deben utilizarse filamentos con elevadas temperaturas de fusión porque la proporción entre la energía luminosa y la energía térmica generada por el filamento aumenta a medida que se incrementa la temperatura, obteniéndose la fuente luminosa más eficaz a la temperatura máxima del filamento.

En las primeras lámparas incandescentes se utilizaban filamentos de carbono, aunque las modernas se fabrican con filamentos de delgado hilo de voframio o tungsteno, cuya temperatura de fusión es de 3.410ºC. El filamento debe estar en una atmósfera al vacío o inerte, ya que de lo contrario al calentarse reaccionaría químicamente con el entorno circundante.

El uso de gas inerte en lugar de vacío en las lámparas incandescentes tiene como ventaja una evaporación más lenta del filamento, lo que prolonga la vida útil de la lámpara. La mayoría de las lámparas incandescentes modernas se rellenan con una mezcla de gases de argón y halógenos, o bien con una pequeña cantidad de nitrógeno o de criptón. La sustitución de las ampollas de vidrio por compactos tubos de vidrio de cuarzo fundido han permitido cambios radicales en el diseño de las lámparas incandescentes.

Tipos de lámparas

Las lámparas de descarga eléctrica dependen de la ionización y de la descarga eléctrica resultante en vapores o gases a bajas presiones en caso de ser atravesados por una corriente eléctrica. Los ejemplos más representativos de este tipo de dispositivos son las lámparas de arco rellenas con vapor de mercurio, que generan una intensa luz azul verdosa y que se utilizan para fotografía e iluminación de carreteras; y las lámparas de neón, utilizadas para carteles decorativos y escaparates.

En las más modernas lámparas de descarga eléctrica se añaden otros metales al mercurio y al fósforo de los tubos o ampollas para mejorar el color y la eficacia. Los tubos de cerámica translúcidos, similares al vidrio, han permitido fabricar lámparas de vapor de sodio de alta presión con una potencia luminosa sin precedentes.

La lámpara fluorescente es otro tipo de dispositivo de descarga eléctrica empleado para aplicaciones generales de iluminación. Se trata de una lámpara de vapor de mercurio de baja presión contenida en un tubo de vidrio, revestido en su interior con un material fluorescente conocido como fósforo. La radiación en el arco de la lámpara de vapor hace que el fósforo se torne fluorescente. La mayor parte de la radiación del arco es luz ultravioleta invisible, pero esta radiación se convierte en luz visible al excitar al fósforo.

Las lámparas fluorescentes se destacan por una serie de importantes ventajas. Si se elige el tipo de fósforo adecuado, la calidad de luz que generan estos dispositivos puede llegar a semejarse a la luz solar. Además, tienen una alta eficacia. Un tubo fluorescente que consume 40 vatios de energía genera tanta luz como una bombilla incandescente de 150 vatios. Debido a su potencia luminosa, las lámparas fluorescentes producen menos calor que las incandescentes para generar una luminosidad semejante.

Un avance en el campo de la iluminación eléctrica es el uso de la luminiscencia, conocida como iluminación de paneles. En este caso, las partículas de fósforo se hallan suspendidas en una fina capa de material aislante, como por ejemplo el plástico.

Esta capa se intercala entre dos placas conductoras, una de las cuales es una sustancia translúcida, como el vidrio, revestida en su interior con una fina película de óxido de estaño. Como los dos conductores actúan como electrodos, al ser atravesado el fósforo por una corriente alterna hace que se ilumine. Los paneles luminiscentes se utilizan para una amplia variedad de objetos, como por ejemplo iluminar relojes y sintonizadores de radio, para destacar los peldaños o los pasamanos de las escaleras, y para generar paredes luminosas.

Sin embargo, el uso de la iluminación de paneles está limitado por el hecho de que las necesidades de corriente para grandes instalaciones es excesivo.

Se han desarrollado una serie de diferentes tipos de lámparas eléctricas para fines especiales, como la fotografía y el alumbrado de alta intensidad. Por lo general, estas lámparas han sido diseñadas de manera que puedan actuar como reflectores al ser revestidas de una capa de aluminio especular. Un ejemplo de ellas es la utilizada en fotografía, una lámpara incandescente que funciona a una temperatura superior a la normal para obtener una mayor salida de luz. Su vida útil está limitada a 2 ó 3 horas, frente a las 750 a 1.000 horas que dura una lámpara incandescente normal.

Las lámparas utilizadas para fotografía de alta velocidad generan un único destello (flash) de luz de alta intensidad que dura escasas centésimas de segundo al encender una carga una hoja de aluminio plegada o un fino hilo de aluminio dentro de una ampolla de vidrio rellena de oxígeno. La lámina se enciende por el calor de un pequeño filamento de la ampolla. Entre los fotógrafos cada vez es más popular la lámpara estroboscópica de descarga de gas a alta velocidad conocida como flash electrónico.

Focos Incandescentes

Los focos incandescentes son el tipo más familiar de luz con incontables aplicaciones en el hogar, tiendas y otros establecimientos comerciales. La luz es producida pasando corriente eléctrica a través de un filamento de alambre delgado, generalmente de tungsteno. Sus ventajas incluyen bajo costo inicial, excelentes calidad de calor, buen control óptico y versatilidad.

Lámparas Halógenas

Las lámparas halógenas producen luz pasando corriente a través de un filamento de alambre delgado pero, estos filamentos operan a temperaturas mayores, las cuales a su vez aumentan la eficacia (LPW) en más de un 20 %. La temperatura del calor es también mayor, produciendo luz “más blanca” que los focos incandescentes estándar. Las lámparas halógenas se encuentran disponibles en una variedad de formas y tamaños y pueden ser usadas de manera efectiva en una variedad de aplicaciones de iluminación, incluyendo iluminación de acentuación y de mostrador, faros delanteros de coches e iluminación proyectada exterior.

La lámpara de descarga de alta intensidad (HID) se basa en la luz emitida por media de un gas o vapor que ha sido excitado por medio de una corriente eléctrica. Es necesario un balastro para encender la lámpara y regular su operación. Las lámparas de descarga tiene ventajas arrolladoras en la eficiencia en energía sobre los incandescentes en donde es aplicable. La de sodio de alta presión, de haluro metálico y de vapor de mercurio son clasificadas como lámparas de descarga de alta intensidad.

Lámparas de Sodio de Alta Presión

Las lámparas de sodio de alta presión son altamente eficientes, (hasta 140 lúmenes por vatio), y producen un tibio color dorado. Excelente para iluminar grandes áreas, éstas son a menudo usadas en la iluminación de caminos, iluminación proyectada, oficinas, centros comerciales, áreas de recepción, parques, usos de iluminación industrial y algunas otras comerciales. Una versión de lujo ha mejorado la presentación del color para las paliaciones de interiores u exteriores.

Lámparas de Haluro Metálico

Las lámparas de haluro metálico de alta presión son también muy eficientes (hasta 115 lúmenes por vatio) y producen una luz blanca, viva con propiedades de presentación del color de buena a muy buena. Esta proporcionan buen control óptico y son usadas en instalaciones de iluminación en exteriores de alta calidad como iluminación proyectada y aplicaciones de iluminación para deportes, y en tiendas detallistas, recepción y otros espacios públicos y comerciales.

Los miembros más nuevos de la familia de haluro metálico son llamados haluro metálico cerámico (CMH). Estos excitantes y nuevos diseños brindan apariencia de calor tipo halógeno, alta eficiencia y cualidades del calor de control superior, expandiendo el uso de haluro metálico a áreas de color mucho más críticas en aplicaciones de tiendas detallistas, comerciales e incluso residenciales.

Lámparas de Vapor de Mercurio

Las lámparas de mercurio son los miembros más antiguos de la familia de descarga de alta intensidad. Aunque no son tan eficientes en cuanto a energía como las lámparas de haluro metálico y las de sodio a alta presión, éstas siguen siendo usadas en una variedad de aplicaciones tales como la iluminación de caminos, de seguridad y para jardines, así como algunas aplicaciones en interiores donde la calidad del color es crítica.

Lámparas Fluorescentes

Las lámparas fluorescentes son lámparas de descarga de mercurio de baja presión las cuales son bastantes eficientes en cuanto a energía (hasta 100 lúmenes por vatio). Cada una requiere un balastro para encender efectivamente la lámpara y regular su operación. Con las lámparas fluorescentes, la cantidad y el color de la luz emitida depende del tipo de cubierta de fósforo aplicada al interior de la lámpara.

El amplio rango de los fósforos disponibles hace posible producir muchos tonos de color diferentes (temperaturas de color) y diferentes niveles de calidad del color (como fue definido por el Índice de Cambio del Color) para satisfacer necesidades de la aplicación especifica. Debido a las áreas de superficie relativamente largas, la luz producida por las lámparas fluorescentes es más difusa y mucho menos direccional que los “recursos de punto” como los focos incandescentes, lámparas halógenas y HID. Todas estas cualidades hacen que las lámparas fluorescentes sean excelentes para la iluminación en general, iluminación orientada y atenuar paredes para aplicaciones en tiendas de detalle, oficinas, así como en aplicaciones industriales y residenciales.

Lámparas Fluorescentes Compactas

La línea de iluminación GE de lámparas fluorescentes representa un importante adelanto en la tecnología fluorescente. Debido a sus diámetros más pequeños y sus configuraciones plegadas, las lámparas fluorescentes compactas brindan alto rendimiento de la luz en tamaños mucho más pequeños que las lámparas fluorescentes lineales convencionales.

Disponibles en una variedad de diseños de conexión (se requiere el balastro por separado) y de balastro empotrada, las lámparas fluorescentes compactas han llevado al diseño de iluminarias de la nueva generación para un rango completo de aplicaciones comerciales e industriales, y brindan ahorro en energía y repuestos de vida más larga para los focos incandescentes. De hecho, las lámparas fluorescentes compactas pueden brindar los mismos lúmenes que un foco incandescente a casi cuarto del costo.

Siguiente Anterior